Cytotoxic Sphingosine 4-Sulfates from the Sponge Spirastrella abata

Naseer Alam,[†] Weihong Wang,[†] Jongki Hong,[‡] Chong-Ok Lee,[§] Kwang Sik Im,[†] and Jee H. Jung^{*,†}

College of Pharmacy, Pusan National University, Pusan 609-735, Korea, Korea Basic Science Institute, Seoul, Korea, and Pharmaceutical Screening Center, Korea Research Institute of Chemical Technology, Taejon, Korea

Received June 20, 2001

Two new sphingosine 4-sulfates (1 and 2) have been isolated from the sponge *Spirastrella abata* as cytotoxic constituents. The gross structures of 1 and 2 were determined by spectroscopic analysis, and their stereochemistry was established by chemical conversion. The compounds exhibited significant cytotoxicity against a small panel of five human tumor cell lines.

In a continuation of our search for bioactive metabolites from the sponge *Spirastrella abata* (Tetraxonida, Spirastrellidae),^{1,2} we have isolated sphingosine sulfates from a brine shrimp active fraction of the same sponge. Although ceramide 1-sulfates and ceramide 1-sulfonates are reported from a bryozoan^{3,4} and a marine bacterium,⁵ respectively, this is the first report of sphingosine 4-sulfates isolated from a marine source. Here we describe the isolation, structure elucidation, and biological activity of these compounds.

The methanolic extract of the frozen sponge was partitioned between CH_2Cl_2 and H_2O , and the brine shrimp active CH_2Cl_2 extract was again partitioned between 90% aqueous MeOH and *n*-hexane. The 90% aqueous MeOH layer was chromatographed on a reversed-phase flash column followed by RP-HPLC separation to yield two sphingosine sulfates (1 and 2) as white amorphous solids.

The ¹H NMR spectrum of compound **1** displayed signals at δ 4.30 (dt), 4.01 (dd), 3.79 (m), and 3.75 (m) for four protons attached to oxygenated carbons. A doublet of triplets for one proton at δ 3.48, which was correlated to a carbon at $\delta_{\rm C}$ 56.7, was assigned to a methine proton bonded to an amino-substituted carbon. This pattern of the ¹H NMR spectrum suggested a sphingosine type structure with three oxygen functions. The various ¹H-¹³C connectivities for compound 1 are shown in Table 1. The signals for the methine proton at δ 3.48 showed COSY correlations with methylene proton signals at δ 4.01 and 3.75, which were correlated to a carbon at $\delta_{\rm C}$ 59.3 (C-1). This proton was also coupled with the H-3 proton at δ 3.79, which in turn showed a COSY correlation with a proton resonating at δ 4.30. The ¹H NMR spectrum also featured signals for a monounsaturated long aliphatic chain. The COSY spec-

Table 1. NMR Spectral Data of 1 in CD ₃ O	$\mathbf{D}^{a,i}$
--	--------------------

position	$\delta_{\rm C}$ $\delta_{\rm H}$ (mult, J in Hz)		
1	59.3	4.01 (dd, 11.7, 3.6)	
		3.75 (m) ^c	
2	56.7	3.48 (dt, 7.8, 3.9)	
3	70.6	3.79 (m) ^c	
4	79.1	4.30 (dt, 7.8, 3.9)	
5	34.9	2.68 (dt, 14.5, 4.8)	
		2.44 (ddd, 14.5, 4.8, 4.2)	
6	135.7	5.57 (m)	
7	124.9	5.57 (m)	
8	33.8	2.01 (q, 6.7)	
9-15	30.4 - 30.8	1.20-1.40 (m)	
16	33.1	1.20–1.40 (m)	
17	23.7	1.20-1.40 (m)	
18	14.4	0.89 (t, 7.8)	

^{*a*} The ¹H and ¹³C NMR spectra were measured at 300 and 50 MHz, respectively. ^{*b*} Assignments were based on COSY and HMQC data. ^{*c*} The signals were overlapped with each other.

trum was helpful to determine the position of the double bond since two allylic methylene proton signals (H-5, 8) were well resolved. The proton at δ 4.30 (H-4) was correlated with the methylene protons at δ 2.68 and 2.44 (H-5), which showed clear correlations with the olefinic protons at δ 5.57. An enhanced peak due to allylic cleavage at m/z120 also confirmed the position of the double bond at C-6. The geometry of the double bond was ascertained to be trans according to the chemical shift of the allylic carbons.⁶ The protonated molecular ion $[M + H]^+$ of compound 1 appeared at *m*/*z* 396 in the LRFABMS, which corresponded with the molecular formula C₁₈H₃₇NO₆S. A prominent peak at m/z 316 [M + H - SO₃]⁺ also indicated a sulfate group in the compound. An intense IR band at 1213 cm⁻¹ further supported the presence of a sulfate function. The location of this group was determined to be at the C-4 position from downfield shifts of the respective proton and carbon signals compared to those of a ceramide from Spirastrella inconstans.7

The compound was acetylated to determine stereochemistry. The ¹H NMR data of the resulting tetraacetate (**1a**, see Experimental Section) was in good correlation with those of the synthetic (2*S*,3*S*,4*R*)-2-acetamido-1,3,4-triacetoxyhexadecane⁸ in terms of the chemical shifts and coupling constants of the respective protons, thus suggesting the same relative stereochemistry. The optical rotation of **1a** ($[\alpha]^{25}_{D} + 26^{\circ}$, CHCl₃) was close to the reported values of (2*S*,3*S*,4*R*)-tetraacetylsphingosines.^{8–11} Thus the structure of **1** was deduced as (*E*)-(2*S*,3*S*,4*R*)-2-amino-1,3dihydroxyoctadec-6-ene-4-sulfate.

Compound **2**, also a white amorphous solid, was considered to be a homologue of **1** by comparison of the NMR and

10.1021/np010312v CCC: \$22.00 © 2002 American Chemical Society and American Society of Pharmacognosy Published on Web 05/21/2002

^{*} To whom correspondence should be addressed. Tel: 82-51-510-2803. E-mail: jhjung@pusan.ac.kr.

[†] Pusan National University.

[‡] Korea Basic Science Institute.

[§] Korea Research Institute of Chemical Technology.

Table 2. In Vitro Cytotoxicities (ED₅₀ μ g/mL) of 1 and 2 against Human Solid Tumor Cells^{a,b}

compound	A549	SK-OV-3	SK-MEL-2	XF498	HCT15
1	9.9	8.2	4.0	4.6	3.7
2	0.3	0.3	0.3	0.3	0.3
cisplatin	0.6	0.9	0.7	0.6	0.6

^a A549: human lung cancer; SK-OV-3: human ovarian cancer; SK-MEL-2: human skin cancer; XF498: human CNS cancer; HCT15: human colon cancer. ^b Compounds 1 and 2 were assayed in separate batches.

IR spectra (see Experimental Section). It showed a [M + H]⁺ peak at m/z 382 in the FABMS and a pattern of fragmentation almost similar to that of 1, indicating that it had one methylene group less than 1. It was assumed that 1 and 2 share the same stereochemistry at their three chiral centers. Thus the structure of compound 2 was proposed as (E)-(2S,3S,4R)-2-amino-1,3-dihydroxyheptadec-6ene-4-sulfate.

These compounds were tested for their cytotoxicity against human solid tumor cell lines to exhibit significant activity. Compound **2** was shown to be more potent than cisplatin (Table 2). Certain lipids are known to bind to and inhibit human DNA topoisomerase.^{12,13} Ceramide 1-sulfates have also been reported to possess potent DNA topoisomerase I inhibitory activity³ and neuraminidase inhibitory activity.⁴ Ceramide 1-sulfonates were reported to inhibit DNA polymerase α .⁵ Considering the level of cytotoxicity of compound 2, further biochemical studies to investigate its mechanism of action may be of interest.

Experimental Section

General Experimental Procedures. Optical rotations were measured with a JASCO DIP-1000 digital polarimeter. ¹H and HMQC spectra were recorded on a Varian Unity Plus 300 spectrometer, while ¹³C NMR were measured on a Bruker AC200 spectrometer. Chemical shifts were reported in reference to the respective residual solvent peaks (δ 3.3 and δ_{C} 49.0 for CD₃OD). FABMS data were obtained using a JEOL JMS-HX110/110A (four-sector instrument with a E1B1E2B2 configuration).

Animal Material. The sponge Spirastrella abata was collected by hand using scuba at a 13 m depth in November 1996, off Cheju Island, Korea, and was described elsewhere.¹

Extraction and Isolation. The frozen sponge (5.25 kg) was extracted with MeOH at room temperature. The MeOH-soluble fraction was partitioned between H₂O and CH₂Cl₂. The CH₂Cl₂-soluble portion was further partitioned between 90% aqueous MeOH and n-hexane to yield 19.8 and 10.9 g of residues, respectively. The 90% aqueous MeOH fraction was subjected to reversed-phase flash column chromatography (YMC Gel ODS-A, 60 Å, 500/400 mesh) eluting with 33-100% MeOH-H₂O followed by EtOAc to yield seven fractions (F1-F7). Fraction F3 was eluted with 85% MeOH-H₂O and was very active in brine shrimp cytotoxicity assay.¹⁴ This fraction was further chromatographed on a reversed-phase HPLC (YMC-Pack CN, 250 \times 10 mm, S-5 μ m, 120 Å) using CH₃CN- H_2O (1:1) to afford compounds **1** and **2** in semipurified form. Re-HPLC using the same conditions yielded compounds 1 (5 mg) and 2 (1.2 mg).

Compound 1: white amorphous solid; IR (film) 3398, 2924, 2853, 1622, 1213 cm⁻¹; ¹H and ¹³C NMR data, see Table 1; LRFABMS *m*/*z* 396 [M + H]⁺ (100), 316 [M + H - SO₃]⁺ (1.3), 298 $[316 - H_2O]^+$ (2.4), 280 $[298 - H_2O]^+$ (1.0), 255 (0.5), 120 (1.0), 60 (2.2).

Compound 2: white amorphous solid; $[\alpha]^{19}_{D} + 11.6^{\circ}$ (*c* 0.07, CHCl₃); IR (film) 3375, 2924, 2853, 1593, 1225 cm⁻¹; ¹H NMR (CD₃OD, 300 MHz) δ 5.58 (2H, m, H-6, H-7), 4.30 (1H, dt, J= 7.8, 3.9 Hz, H-4), 4.00 (1H, dd, J = 11.7, 3.6 Hz, H-1), 3.77 (1H, m, H-3), 3.74 (1H, m, H-1), 3.45 (1H, dt, J = 7.8, 3.9 Hz, H-2), 2.66 (1H, dt, J = 13.9, 4.8 Hz, H-5), 2.45 (1H, ddd, J =13.9, 4.8, 3.9 Hz, H-5), 2.02 (1H, q, J = 6.7, H-8), 1.20–1.40 (16H, m, H-9–H-16), 0.89 (3H, t, J = 7.8 Hz, H-17); ¹³C NMR (CD₃OD, 50 MHz) δ 135.6 (C-6), 125.0 (C-7), 79.1 (C-4), 70.8 (C-3), 59.7 (C-1), 56.0 (C-2), 34.8 (C-5), 33.9 (C-8), 33.1 (C-15), 30.4-30.8 (C-9-C-14), 23.7 (C-16), 14.4 (C-17); LRFABMS m/z $382 [M + H]^+$ (100), $302 [M + H - SO_3]^+$ (1.0), 284 [302 - $H_2O]^+$ (1.2), 266 [284 - $H_2O]^+$ (0.6), 255 (0.3), 120 (0.4), 60 (3.5).

Acetylation of 1. Compound 1 (2.5 mg) was mixed with a mixture of Ac₂O-CH₃SO₃H (40:1 v/v)¹⁵ and heated to 100 °C for 30 min and was then allowed to cool. About 1 g of ice was added to the reaction mixture and extracted three times with an equal volume of benzene. The combined extracts were purified by reversed-phase HPLC (YMC-Pack CN, 250×10 mm, S-5 μ m, 120 Å) using CH₃CN-H₂O (6:4) to afford **1a** (0.5 mg): $[\alpha]^{25}_{D}$ +26° (*c* 0.17, CHCl₃); ¹H NMR data (200 MHz, $CDCl_3$) δ 5.99 (d, J = 9.3 Hz, -NH-Ac), 5.44 (dt, J = 15.6, 7.3 Hz, H-7), 5.27(dt, J = 15.6, 6.8 Hz, H-6), 5.08 (dd, J = 7.3, 3.9Hz, H-3), 4.94 (dt, J = 7.3, 3.9 Hz, H-4), 4.48 (m, H-2), 4.25 (dd, J = 11.7, 4.9 Hz, H-1), 3.99 (dd, J = 11.7, 2.5 Hz, H-1), 2.08, 2.04, 2.03, 2.01 (4 \times s, 3 \times OAc, 1 \times NHAc), 1.58–1.23 (m, H-9–H-17), 0.87 (t, J = 7.0 Hz, H-18).

Acknowledgment. The authors gratefully acknowledge Dr. C. J. Sim for the identification of the sponge. This study was supported by a grant from the Korea Research Foundation (99-041-F00309).

References and Notes

- (1) Shin, B. A.; Kim, Y. R.; Lee, I.-S.; Sung, C. K.; Hong, J.; Sim, C. J.;
- (1) Sini, D. A., Rin, T. R., Lee, F.S., Sug, C. R., Hong, J., Hong, J., Hong, J., Mat, Prod. **1999**, 62, 1554–1557.
 (2) Alam, N.; Bae, B. H.; Hong, J.-K.; Lee, C.-O.; Shin, B. A.; Im, K. S.; Jung, J. H. J. Nat. Prod. **2001**, 64, 533–535.
 (3) Ojika, M.; Yoshino, G.; Sakagami, Y. Tetrahedron Lett. **1997**, 38, 1007
- 4235-4238.
- (4) Nakao, Y.; Takada, K.; Matsunaga, S.; Fusetani, N. Tetrahedron 2001, 57, 3013-3017.
- (5) Kobayashi, J.; Mikami, S.; Shigemori, H.; Takao, T.; Shimonishi, Y.; (a) Robayashi, S.; Mahara, S. Tetrahedron 1995, 51, 10487–10490.
 (b) Stothers, J. B. Carbon-13 NMR Spectroscopy, Academic Press: New
- York, 1972.
- (7) Garg, H. S.; Agrawal, S. J. Nat. Prod. 1995, 58, 442-445.
- (8) Sugiyama, S.; Honda, M.; Komori, T. Liebigs Ann. Chem. 1988, 619- $62\bar{5}$
- (9) Asai, N.: Fusetani, N.: Matsunaga, S.: Sasaki, J. Tetrahedron 2000. 56, 9895-9899.
- (10) Loukaci, A.; Bultel-Poncé, V.; Longeon, A.; Guyot, M. J. Nat. Prod. 2000, 63, 799-802.
- (11) Lourenço, A.; Lobo, A. M.; Rodriguez, B.; Jimeno, M.-L. Phytochem-
- (11) Isur (1996, 43, 617–62).
 (12) Ikegami, Y.; Takeuchi, N.; Hanada, M.; Hasegawa, Y.; Ishii, K.; Andoh, T.; Sato, T.; Suzuki, K.; Yamaguchi, H.; Miyazaki, S.; Nagai, K.; Watanabe, S.; Saito, T. J. Antibiot. 1990, 43, 158–162.
- (13) Tamura, H.; Ikegami, Y.; Ono, K.; Sekimizu, K.; Andoh, T. FEBS Lett. **1990**, *261*, 151–154.
- (14) Meyer, B. N.; Ferrigni, N. R.; Putnam, J. E.; Jacobsen, L. B.; Nichols, D. E.; McLaughlin, J. L. *Planta Med.* **1982**, 45, 31–34.
- (15) Paulson, G. D.; Portony, C. E. J. Agr. Food Chem. 1970, 18, 180-181.

NP010312V